Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Electron. j. biotechnol ; 15(5): 8-8, Sept. 2012. ilus, tab
Article in English | LILACS | ID: lil-657667

ABSTRACT

Background: Calibrachoa Cerv. (ex La Llave & Lexarza) is a genus of the Solanaceae family (La Llave and Lexarza, 1825). This genus has a high ornamental and economic value due to its intrinsic variability and multiplicity of flower colours. In Argentina there are eight native species, and one of them is Calibrachoa caesia. The genetic diversity among 35 accessions of C. caesia, from five departments in the province of Misiones, was analyzed using ISSR markers. Results: Thirteen ISSR primers yielded a reproducible banding pattern, with 701 amplified loci and 98 percent of polymorphism. The ISSR primers 5’CT, 5’CA, 5’GA, 5’GACA, 3’CAC, 3’TG and 3’TC generated 100% polymorphic patterns. The Rp values ranged from 23.20 to 10.29 for 5’GACA and 3’AG primers, respectively, while the average values for MI and PIC were 0.367 and 0.231, respectively. The more informative primers were 5’GACA and 5’GA, and the less informative was 3’AC. Simple matching coefficient of similarity varied from 0.8875 to 0.6659, indicating high levels of genetic similarity among the genotypes studied. The UPGMA cluster analysis indicated three distinct clusters; one comprised genotypes of the five departments, while the second included individuals from Guaraní and Oberá regions and the third cluster included the San Pedro individuals. The overall grouping pattern is in agreement with principal coordinate analysis (PCoA). Conclusions: The Bayesian cluster analysis revealed structuring of the C. caesia population and two clusters were identified, which correspond to UPGMA major clades. The AMOVA test for all populations showed highest genetic variation within populations (90 percent), meanwhile the Fst coefficient was 0.098, indicating a medium differentiation between populations. These results showed a great intrapopulation genetic diversity but no significant difference was detected among populations...


Subject(s)
Genetic Markers , Genetic Variation , Microsatellite Repeats , Petunia/genetics , Solanaceae/genetics
2.
Genet. mol. biol ; 34(4): 634-639, 2011. ilus, graf
Article in English | LILACS | ID: lil-605937

ABSTRACT

The CYP2E1 protein belongs to the P450 enzymes family and plays an important role in the metabolism of small molecular and organic pollutants. In this study we generated CYP2E1 transgenic plants of Petunia using Agrobacterium rhizogenes K599. PCR analysis confirmed that the regenerated plants contained the CYP2E1 transgene and the rolB gene of the Ri plasmid. Southern blotting revealed the presence of multiple copies of CYP2E1 in the genome of transgenic plants. Fluorescent quantitative PCR revealed exogenous CYP2E1 gene expression in CYP2E1 transgenic plants at various levels, whereas no like expression was detected in either GUS transgenic plants or wild-types. The absorption of benzene and toluene by transgenic plants was analyzed through quantitative gas chromatography. Transgenic plants with high CYP2E1 expression showed a significant increase in absorption capacity of environmental benzene and toluene, compared to control GUS transgenic and wild type plants. Furthermore, these plants also presented obvious improved resistance to formaldehyde. This study, besides being the first to reveal that the CYP2E1 gene enhances plant resistance to formaldehyde, also furnishes a new method for reducing pollutants, such as benzene, toluene and formaldehyde, by using transgenic flowering horticultural plants.


Subject(s)
Cytochrome P-450 CYP2E1 , Petunia/genetics , Plants, Genetically Modified , Benzene , Formaldehyde , Polymerase Chain Reaction , Toluene
3.
Acta Pharmaceutica Sinica ; (12): 1008-1014, 2011.
Article in Chinese | WPRIM | ID: wpr-233062

ABSTRACT

ERF family transcription factor (TF) represented ethylene-responsive protein which harbored a conserved AP2 domain. After searching the plant transcription factor database, a total of 75 unigenes was found which contained AP2 domain from the transcriptome dataset of Panax quinquefolius L. One unique sequence of ERF transcript, named as PqERF1, was cloned with entire open reading frame of 933 base pairs (bp). Protein prediction result indicated that the gene was localized in nucleus and had a conserved AP2 domain. PqERF1 gene could be induced by methyl jasmonate (MeJA) which was consistent to the inducing profile of triterpene ginsenosides. InterproScan prediction indicated that PqERF1 was probably a pathogenesis-related gene. Sequence alignment and phylogenetic analysis demonstrated PqERF1 was with high identity and had relative close relationship to the NtERF4 (Nicotiana tabacum), PhERF12 (Petunia x hybrida) and DcERF1 (Daucus carota) which was related to plant defense, regulation of secondary metabolism and the flower senescence respectively. Therefore, the gene was likely involved in regulation of secondary metabolism, plant defense and physical processes which would provide gene resource for further study on secondary metabolite synthesis and molecular breeding of P. quinquefolius.


Subject(s)
Amino Acid Sequence , Computational Biology , Daucus carota , Genetics , Metabolism , Gene Expression Regulation, Plant , Open Reading Frames , Panax , Genetics , Metabolism , Petunia , Genetics , Metabolism , Phylogeny , Plant Proteins , Genetics , Metabolism , Protein Structure, Secondary , RNA, Plant , Genetics , Sequence Alignment , Tobacco , Genetics , Metabolism , Transcription Factor AP-2 , Genetics , Metabolism
4.
Electron. j. biotechnol ; 12(1): 7-8, Jan. 2009. ilus
Article in English | LILACS | ID: lil-538041

ABSTRACT

The plant hormone abscisic acid has huge economic potential and can be applied in agriculture and forestry for it is considered to be involved in plant resistance to stresses such as cold, heat, salinity, drought, pathogens and wounding. Now overproducing strains of Botrytis cinerea are used for biotechnological production of abscisic acid. An LTR retrotransposon, Boty-aba, and a solo LTR were identified by in silico genomic sequence analysis, and both were detected within the abscisic acid gene cluster in B. cinerea B05.10, but not in B. cinerea SAS56. Boty-aba contains a pair of LTRs and two internal genes. The LTRs and the first gene have features characteristic of Ty3/gypsy LTR retrotransposons. The second gene is a novel gene, named brtn, which encodes for a protein (named BRTN) without putative conserved domains. The impressive divergence in structure of the abscisic acid gene clusters putatively gives new clues to investigate the divergence in the abscisic acid production yields of different B. cinerea strains.


Subject(s)
Abscisic Acid/genetics , Abscisic Acid , Abscisic Acid/therapeutic use , Botrytis/enzymology , Botrytis/metabolism , Ascomycota/enzymology , Petunia/genetics , Retroelements/genetics , Terminal Repeat Sequences
SELECTION OF CITATIONS
SEARCH DETAIL